行业新闻当前位置:首页 > 行业新闻

电力系统基础知识

发布时间:2018-10-23 9:21:14  来源: 本站原创  阅读次数: 2740

1.电力系统的构成

2.电力系统的额定电压

3.电力系统的中性点运行方式

4.供电质量的主要指标

5.电气主接线方式

电力系统的构成

   一个完整的电力系统由分布各地的各种类型的发电厂、升压和降压变电所、输电线路及电力用户组成,它们分别完成电能的生产、电压变换、电能的输配及使用。

图1-1 电力系统的组成示意图

 

电力系统的额定电压

 

       电网电压是有等级的,电网的额定电压等级是根据国民经济发展的需要、技术经济的合理性以及电气设备的制造水平等因素,经全面分析论证,由国家统一制定和颁布的。

表1-1  我国交流电力网和电气设备的额定电压

 

电力网和用电设备

额定电压

发电机

额定电压

电力变压器额定电压

一次绕组

二次绕组

低压

V

220/127

380/220

660/380

230

400

690

220/127

380/220

660/380

230/133

400/230

690/400

高压

kV

3

6

10

35

63

110

220

330

500

750

3.15

6.3

10.5

13.8,15.75,18,20

3及3.15

6及6.3

10及10.5

13.8,15.75,18,20

35

63

110

220

330

500

750

3.15及3.3

6.3及6.6

10.5及11

38.5

69

121

242

363

550

1.用电设备

用电设备的额定电压和电网的额定电压一致。实际上,由于电网中有电压损失,致使各点实际电压偏离额定值。为了保证用电设备的良好运行,国家对各级电网电压的偏差均有严格规定。显然,用电设备应具有比电网电压允许偏差更宽的正常工作电压范围。

2.发电机

       发电机的额定电压一般比同级电网额定电压高出5%,用于补偿电网上的电压损失。

3.变压器

       变压器的额定电压分为一次和二次绕组。对于一次绕组,当变压器接于电网末端时,性质上等同于电网上的一个负荷(如工厂降压变压器),故其额定电压与电网一致,当变压器接于发电机引出端时(如发电厂升压变压器),则其额定电压应与发电机额定电压相同。对于二次绕组,额定电压是指空载电压,考虑到变压器承载时自身电压损失(按5%计),变压器二次绕组额定电压应比电网额定电压高5%,当二次侧输电距离较长时,还应考虑到线路电压损失(按5%计),此时, 二次绕组额定电压应比电网额定电压高10%。

电力系统的中性点运行方式

       在电力系统中,当变压器或发电机的三相绕组为星形联结时,其中性点可有两种运行方式:中性点接地和中性点不接地。中性点直接接地系统称为大电流接地系统,中性点不接地和中性点经消弧线圈(或电阻)接地的系统称为小电流接地系统。中性点的运行方式主要取决于单相接地时电气设备绝缘要求及供电可靠性。图1-2列出了常用的中性点运行方式。图中,电容C为输电线路对地分布电容。

 

 

图1-2 电力系统中性点运行方式

a)中性点直接接地        b)中性点不接地

c)中性点经消弧线圈接地    d)中性点经电阻接地

中性点直接接地方式:当发生一相对地绝缘破坏时,即构成单相短路,供电中断,可靠性降低。但是,该方式下非故障相对地电压不变,电气设备绝缘水平可按相电压考虑。此外,在380/220V低压供电系统中,线对地电压为相电压,可接入单相负荷。

中性点不接地方式:当发生单相接地故障时,线电压不变,而非故障相对地电压升高到原来相电压的√3倍,供电不中断,可靠性高。

 

电质量的主要指标

       决定用户供电质量的指标为电压、频率和可靠性。

1.电压

       理想的供电电压应该是幅值恒为额定值的三相对称正弦电压。由于供电系统存在阻抗、用电负荷的变化和用电负荷的性质等因素,实际供电电压无论是在幅值上、波形上还是三相对称性上都与理想电压之间存在着偏差。

       (1)电压偏差:电压偏差是指电网实际电压与额定电压之差,实际电压偏高或偏低对用电设备的良好运行都有影响。

       (2)电压波动和闪变:电网电压的均方根值随时间的变化称为电压波动,由电压波动引起的灯光闪烁对人眼脑的刺激效应称为电压闪变。当电弧炉等大容量冲击性负荷运行时,剧烈变化的负荷电流将引起线路压降的变化,从而导致电网发生电压波动。

       (3)高次谐波:当电网电压波形发生非正弦畸变时,电压中出现高次谐波。高次谐波的产生,除电力系统自身背景谐波外,在用户方面主要由大功率变流设备、电弧炉等非线性用电设备所引起。高次谐波的存在降导致供电系统能耗增大、电气设备绝缘老化加快,并且干扰自动化装置和通信设施的正常工作。

       (4)三相不对称:三相电压不对称指三个相电压的幅值和相位关系上存在偏差。三相不对称主要由系统运行参数不对称、三相用电负荷不对称等因素引起。供电系统的不对称运行,对用电设备及供配电系统都有危害,低压系统的不对称运行还会导致中性点偏移,从而危及人身和设备安全。

2.频率

       我国规定的电力系统标称频率(俗称工频)为50Hz,国际上标称频率有50Hz和60Hz两种。由电力系统供电的交流用电设备的工作频率应与电力系统频率相一致。为了达到某种特殊目的,有的用电设备需在其它频率下工作,则可配以专用变频电源供电,如高频加热、电动机变频调速等。

当电能供需不平衡时,系统频率会偏离其标称值。频率偏差不仅影响用电设备的工作状态、产品的产量和质量,更重要的影响到电力系统的稳定运行。

用户供电系统的电压频率是由电力系统保证的。我国国标规定,电力系统正常频率偏差允许值为±0.2Hz,当系统容量较小时,偏差值可以放到±0.5Hz。

3.可靠性

       可靠性即根据用电负荷的性质和突然中断其供电在政治或经济上造成损失和影响的程度,对用电设备提出的不允许中断供电的要求。按照供电可靠性要求,用电负荷分为下列三级:

       (1)一级负荷:突然停电将造成人身伤亡,或在经济上造成重大损失,或在政治上造成重大不良影响者。如重要交通和通信枢纽用电负荷、重点企业中的重大设备和连续生产线、政治和外事活动中心等。

       (2)二级负荷:突然停电将在经济上造成较大损失,或在政治上造成不良影响者。如突然停电将造成主要设备损坏或大量产品报废或大量减产的工厂用电负荷,交通和通信枢纽用电负荷,大量人员集中的公共场所等。

       (3)三级负荷:不属于一级和二级负荷者。

 

电气主接线方式

       主接线图(亦称原理接线图)表示电能由电源分配给用户的主要电路,图中表示出所有的电气设备及其联接关系。

1、母线制

常用的母线制主要有三种:单母线制、单母线分段制和双母线制,工厂供电系统一般不采用双母线制。

1)单母线

       单母线制如下图所示,一般用于只有一回进线的情况。

2)单母线分段制

       在两回电源进线的情况下,宜采用单母线分段制,母线分段开关

2、继电保护基础知识

(1)继电保护的作用及要求

(2)供电系统中常用的保护

(3) 继电保护的发展趋势

(4)微机保护的优点

继电保护的作用及要求

(一)继电保护广泛应用在电力系统、飞机、机车、舰船、汽车等等各个领域。我们讨论的主要是电力系统的继电保护。

电力系统的运行要求安全可靠、电能质量高、经济性好。但是,电力系统的组成元件数量多,结构各异,运行情况复杂,覆盖的地域辽阔。因此,受自然条件、设备及人为因素的影响,可能出现各种故障和不正常运行状态。故障中最常见、危害最大的是各种形式的短路。发生短路时可能造成的危害是:

故障点的很大的短路电流燃起的电弧,使故障设备损坏。

从电流到短路点间流过的短路电流,它们引起的发热和电动力将造成在该路径中有关的非故障元件的损坏。

靠近故障点的部分地区电压大幅度下降,使用户的正常工作遭到破坏或影响产品质量。

破坏电力系统并列运行的稳定性,引起系统振荡,甚至使该系统瓦解和崩溃。

继电保护的作用是:(1)在过载时,继电保护装置应发出警报信号。(2)在短路故障时,继电保护装置应立即动作,要求准确、迅速地自动将有关的断路器跳闸,将故障部分从系统中断开,确保其他回路的正常运行。(3)为了保证电源不中断,继电保护装置应将备用电源投入或经自动装置进行重合闸。 

 (二)继电保护的基本要求

①.选择性

基本含义是保护装置动作时,仅将故障元件从电力系统中切除,使停电范围尽量减小,以保证系统中非故障部分继续安全运行。

②.速动性

速动性是指继电保护装置应以尽可能快的速度断开故障元件。这样就能减轻故障设备的损坏程度,减小用户在低电压情况下工作的时间,提高电力系统运行的稳定性。

③.灵敏性

保护装置对其保护范围内的故障或不正常运行状态的反应能力称为灵敏性(灵敏度)。灵敏性常用灵敏系数来衡量。它是在保护装置的测量元件确定了动作值后,按最不利的运行方式、故障类型、保护范围内的指定点校验,并满足有关规定的标准。

④.可靠性

可靠性是指在保护装置规定的保护范围内发生它应该反应的故障时,保护装置应可靠地动作(即不拒动)。而在不属于该保护动作的其他任何情况下,则不应该动作(即不误动)

供电系统中常用的保护

(1)电网的电流电压保护:

包括:单侧电源网络的相间短路的电流电压保护、电网相间短路的方向性电流保护、大接地电流系统的零序电流保护、中性点不接地单相接地的保护;

电网的距离保护

输电线路的纵联保护

包括:纵联差动保护、高频保护、高频闭锁方向保护、高频闭锁负序方向保护、高频闭锁距离保护和零序保护、高频相差动保护、光纤差动保护;

输电线路的自动重合闸

     包括:三相自动重合闸、综合自动重合闸

电力变压器的保护

         包括:主变压器内部故障的差动保护、主变压器零序保护、主变压器瓦斯保护、高压厂用变压器保护;

发电机保护

包括:相间短路的纵联差动保护、发电机定子绕组匝间短路保护、发电机定子绕组的单相接地保护、发电机低励失磁保护、励磁回路一点接地保护、励磁回路两点接地保护、转子表层过热(负序电流)保护、发电机的逆功率保护、发电机失步异常运行保护、定子绕组对称过负荷保护、发电机变压器组公用继电保护;

母线的继电保护

包括:母线差动保护、电流相位比较式母线保护;

异步电动机和电容器的保护

 

(2)供电系统的单端电网的保护:

供电线路常见的故障对架空线来说,有断线、碰线、绝缘子被击穿、相间飞弧、短路以及杆塔倒塌等;对电缆来说,应其直接埋地或敷设在混凝土管、隧道等,受外界因素影响较少,除本身绝缘老化的原因外,只有某些特殊情况下,如的基下沉、土壤含有杂质、建筑施工破坏、热力网影响等,才会使相间或相地之间绝缘击穿或断裂,但是电缆接头连接不良或由于污垢而产生的故障,占其全部故障的70%以上。

工业企业供电线路基本上是开式单端供电网络,厂区内距离较短,所以线路保护并不复杂,常用的保护装置有:定时限或反时限的过电流保护;低电压保护;电流速断保护;中性点不接地系统的单相接地保护等。

一、过电流保护

当流过被保护元件中的电流超过预先整定的某个数值时就使断路器跳闸或给出报警信号的装置称为过电流保护装置,它有定时限和反时限两种。

⒈定时限过电流保护装置

定时限过电流是电流继电器本身的动作时限是固定的,与通过它的电流大小无关。这种保护装置的接线图如图5-12所示。

⒉反时限过电流保护装置

 图5-14是一个交流操作的反时限过电流保护装置图,1KA、2KA为GL型感应式带有瞬时动作元件的反时限过电流继电器,继电器本身动作带有时限,并有动作指示掉牌信号,所以回路不需接时间继电器和信号继电器。

二、电流速断保护

定时限过电流保护装置的时限一经整定便不能变动,如图5-13所示,当k3处发生三相短路故障时,断路器QF3的继电保护动作时间必须经过t0+2△t才能动作,达不到速断的目的。为了减小本段线路故障下的事故影响范围,当过电流保护的动作时限大于0.7s时,便需设置电流速断保护,以保证本段线路的短路故障能迅速地被切除。

 具有电流速断和定时限过电流保护的线路如图5-16所示。

三、低电压保护

   低电压保护主要用于以下几个方面。

     1.     低电压闭锁的过电流保护定时限过电流保护的动作电流是按躲过最大的负荷电流来整定的,在某些情况下可能满足不了灵敏度的要求。为此可采用低电压继电器的过电流保护装置来提高其灵敏度。其闭锁接线如图5-20所示。

    2.       用于电动机的低电压保护

电动机采用低电压保护的目的是当电网电压降低到某一数值时,低电压保护装置动作,将不重要的或不允许自起动的电动机从电网切除,以保证重要电动机在电网电压恢复时,顺利自起动。

四、中性点不接地系统的单相接地保护

中性点不接地系统发生单相接地故障时,线电压值不变,故障相对地电压为零,非故障相对地电压升高了√3倍,流经故障点的电容电流Ic是正常时每相对地电容电流Ic0的3倍。因此在供电系统中采用中性点不接地系统的目的是,当系统发生几率最多的单相接地故障时,一般并不要求立即将电源切断,这是因为这种故障并不影响接于线电压上电气设备的正常工作,仍可继续运行。但如果流过故障点的接地电流数值较大时,就会在接地点间产生间歇性电弧以致引起过电压、损坏绝缘,发展成为相间或两相对地短路,扩大故障。因此,对中性点不接地系统应当装设绝缘监测装置,必要时还可装设零序电流保护。

五、变压器的保护

电力变压器是供电系统中的重要设备,它的故障对供电的可靠性和用户的生产、生活将产生严重的影响。因此,必须根据变压器的容量和重要程度装设适当的保护装置。

变压器的故障一般分为内部故障和外部故障两种。

变压器的内部故障主要有绕组的相间短路、绕组匝间短路和单相接地短路,内部故障是很危险的,因为短路电流产生的电弧不仅会破坏绕组绝缘,烧坏铁心,还可能使绝缘材料和变压器油受热而产生大量气体,引起变压器油箱爆炸。

变压器常见的外部故障是引出线上绝缘套管的故障从而可能导致引出线的相间短路或接地短路。

变压器的不正常工作状态有:由于外部短路和过负荷而引起的过电流,油面的过度降低和温度升高等。

对于变压器的故障种类及不正常运行状态,变压器一般应装备下列保护。

(1)      瓦斯保护

它能反应(油浸式)变压器油箱内部故障油面降低,瞬时动作于信号或跳闸。

(2)      差动保护或电流速断保护

它能反应变压器内部故障和引出线的相间短路、接地短路,瞬时动作于跳闸。

(3)      过电流保护

它能反应变压器外部短路而引起的过电流,带时限动作于跳闸,可作为上述保护的后备保护。

(4)      过负荷保护

它能反应过载而引起的过电流,一般作用于信号。

(5)      温度信号

它能反应变压器温度升高和油冷却系统的故障。

继电保护的发展趋势

电力系统20世纪60年代以前主要采用电磁型保护,70年代是电磁型、晶体管保护并用时期, 20世纪60年代末期,国外提出用计算机构成继电保护的倡议,当时的计算机硬件非常昂贵。还不具备商业性生产这类保护装置的条件,早期的研究工作是以小型机为基础的。出于经济上的考虑,采用一台小型计算机来实现多个电气设备或整个变电站的保护功能,但这种方案的可靠性显然受到限制。

70年代中期,随着大规模集成电路技术的发展,微型计算机进入实用阶段,性价比和可靠性大为提高,为微机保护的使用化打下了硬件基础。

伴随着计算机硬件水平的不断提高,各种微机保护软件的算法不断被提出,为继电保护的推广和应用提供理论基础。

经过30多年的发展和变化,目前微机保护已经在电力系统的各个变电站、发电厂和供电线路上广泛使用。

微机保护的优点

微机继电保护装置是通过数字量输出实现对断路器等的控制。易于解决常规保护难于解决的问题,对于相同的硬件,可以通过算法的不同,实现不同的保护。这样,也就可以通过改善算法来不断完善保护性能,而不需改动硬件。通过软件算法的改善,可以较好地解决原有模拟继电保护装置难于解决的问题。在各种保护方法中,考虑到了电力系统的各种情况,具有很强的综合分析和判断能力。由于计算机的通用性,因此,在继电保护硬件的基础上,可以很方便地通过增加软件的方法获得保护之外的功能。

目前的微机保护装置均设有通信接口,这样可方便地将各地保护装置纳入变电站综合自动化系统,实现远方修改定值、投切保护装置。

3、变电所综合自动化系统

(1)综合自动化的优点

(2)综合自动化系统的基本功能

(3)  综合自动化系统的结构和配置

综合自动化系统的基本功能

变电站在电力系统中是不可缺少的重要环节,因为变电站是电力系统中通过变压器进行电压的升降和进行电能交换的地点;变电站也是电能不同电压等级的母线进行重新分配的地点;变电站还是不同电压等级线路的始端或终端,因此变电站是电力系统中重要的“调节与控制中心”;特别是电力与无功的调节中心;

变电站又是电力系统中重要的“信息源”与“信息中继站”。

因此变电站对电力系统的安全、稳定运行,保证对用户供电可靠性与电能质量起着不可替代的作用。

变电站的设备主要可以分为:

一次设备:变压器(含主变压器、所用变压器、消弧线圈等);开关(高压断路器、隔离开关、空气开关等);电抗器;母线、电力电缆、电力线路、瓷瓶、支架等。

二次设备:电压互感器、电流互感器、阻波器、耦合电容器以及“控制”、“测量”、“保护”、“自动装置”、“远动”、“通讯”等设备。

   变电站需完成的功能大概有63种,归纳起来可分为以下几种功能组:

    控制、监视功能,自动控制功能,测量表记录功能,继电保护功能,与继电保护有关的功能,接口功能,系统功能。

    结合我国的情况,变电站综合自动化系统的基本功能可用监控子系统、微机保护子系统与远动通信子系统来说明。

综合自动化系统的结构合配置

变电站综合自动化系统的发展过程与集成电路技术、计算机技术、通信技术和网络技术密切相关。随着高科技的不断发展,综合自动化系统的体系结构也不断发生变化,其性能和功能不断提高。从国内外变电站综合自动化系统的发展过程来看,其结构形式有集中式、分布集中式、分散与集中相结合和全分散式等四种类型

变电站综合自动化

1)功能综合化

变电站综合自动化系统是一个技术密集、多专业技术相互交叉、相互配合的系统。它是在计算机硬件和软件技术、数据通信技术的基础上发展起来的。它综合了变电站内除一次设备和交直流电源以外的全部二次设备微机监控系统综合了原来的仪表屏、操作屏、模拟屏和变送器柜、远动装置及中央信号系统等功能;微机保护子系统代替了电磁式或晶体管式的保护装置;还可根据用户需要,微机保护子系统和监控系统相结合,综合了故障录波、故障测距和小电流接地等子系统功能。

2)设备操作监视屏幕化

   变电站实现综合自动化后,无论是有人值班,还是无人值班,操作人员不是在变电站内,就是在主控站或调度室内,面对彩色屏幕显示器,对变电站的设备和输电线路进行全方位的监视与操作。

3)结构分布、分层化

综合自动化系统内各子系统和各功能模块由不同配置的单片机或微型计算机组成,采用分布式结构,通过网络、总线将微机保护、数据采集、控制等各子系统连接起来,构成一个分级分布式的系统。

4)通信局域或网络化、光缆化

5)运行管理智能化

    变电站综合自动化的另一个最大特点是运行管理智能化。智能化的含义不仅是能实现许多自动化的功能,例如电压、无功自动调节,不完全接地系统单相接地自动选线,自动事故判别与事故记录,事件顺序记录,指标打印,自动报警等;更重要的是能实现故障分析和故障恢复操作智能化;而且能实现自动化系统本身的故障自诊断、自闭锁和自恢复功能。这对于提高变电站的运行管理水平和安全可靠性是非常重要的,也是常规的二次设备所无法实现的。常规的二次设备只能监视一次设备,而本身的故障必须靠维护人员去检查,本身不具备自诊断能力。